Qus : 1
3
The graph of function f ( x ) = log e ( x 3 + √ x 6 + 1 ) is symmetric about:
1 x- axis 2 y- axis 3 origin 4 y=x Go to Discussion
Solution
Qus : 2
1
If f(x) is a polynomial of degree 4, f(n) = n + 1 & f(0) = 25, then find f(5) = ?
1 30 2 20 3 25 4 None of these Go to Discussion
Solution
Correct Shortcut Method — Find f ( 5 )
Step 1: Define a helper polynomial:
g ( x ) = f ( x ) − ( x + 1 )
Given: f ( 1 ) = 2 , f ( 2 ) = 3 , f ( 3 ) = 4 , f ( 4 ) = 5 ⇒ g ( 1 ) = g ( 2 ) = g ( 3 ) = g ( 4 ) = 0
So,
g ( x ) = A ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) ⇒ f ( x ) = A ( x − 1 ) ( x − 2 ) ( x − 3 ) ( x − 4 ) + ( x + 1 )
Step 2: Use f ( 0 ) = 25 to find A:
f ( 0 ) = A ( − 1 ) ( − 2 ) ( − 3 ) ( − 4 ) + ( 0 + 1 ) = 24 A + 1 = 25 ⇒ A = 1
Step 3: Compute f ( 5 ) :
f ( 5 ) = ( 5 − 1 ) ( 5 − 2 ) ( 5 − 3 ) ( 5 − 4 ) + ( 5 + 1 ) = 4 ⋅ 3 ⋅ 2 ⋅ 1 + 6 = 24 + 6 = 30
✅ Final Answer: f ( 5 ) = 30
Qus : 3
2
The maximum value of f(x) = (x – 1)^2 (x + 1)^3 is equal to \frac{2^p3^q}{3125}
then the ordered pair of (p, q) will be
1 (3,7) 2 (7,3) 3 (5,5) 4 (4,4) Go to Discussion
Solution
Maximum Value of f(x) = (x - 1)^2(x + 1)^3
Step 1: Let’s define the function:
f(x) = (x - 1)^2 (x + 1)^3
Step 2: Take derivative to find critical points
Use product rule:
Let u = (x - 1)^2 , v = (x + 1)^3
f'(x) = u'v + uv' = 2(x - 1)(x + 1)^3 + (x - 1)^2 \cdot 3(x + 1)^2
f'(x) = (x - 1)(x + 1)^2 [2(x + 1) + 3(x - 1)]
f'(x) = (x - 1)(x + 1)^2 (5x - 1)
Step 3: Find critical points
Set f'(x) = 0 :
(x - 1)(x + 1)^2 (5x - 1) = 0
\Rightarrow x = 1,\ -1,\ \frac{1}{5}
Step 4: Evaluate f(x) at these points
f(1) = 0
f(-1) = 0
f\left(\frac{1}{5}\right) = \left(\frac{1}{5} - 1\right)^2 \left(\frac{1}{5} + 1\right)^3 = \left(-\frac{4}{5}\right)^2 \left(\frac{6}{5}\right)^3
f\left(\frac{1}{5}\right) = \frac{16}{25} \cdot \frac{216}{125} = \frac{3456}{3125}
Step 5: Compare with given form:
It is given that maximum value is \frac{3456}{3125} = 2^p \cdot 3^q / 3125
Factor 3456:
3456 = 2^7 \cdot 3^3
\Rightarrow \text{So } p = 7, \quad q = 3
✅ Final Answer:
\boxed{(p, q) = (7,\ 3)}
Qus : 4
2
If | x - 6|= | x - 4x | -| x^2- 5x +6 | , where x is a real variable
1
x=(2,5) 2 x=[2,5] \cup [6, \infty) 3 R-[2,6] 4
None of these Go to Discussion
Solution Qus : 5
3
A real valued function f is defined as f(x)=\begin{cases}{-1} & {-2\leq x\leq0} \\ {x-1} & {0\leq x\leq2}\end{cases} .
Which of the following statement is FALSE?
1
f(|x|)=|x|-1,\, if\, 0\leq x\leq 2 f(|x|)=x-1,\, if\, 1\leq x\leq2 3 f(|x|)+|f(x)|=1,\, if\, 0\leq x\leq1 4
f(|x|)-|f(x)|=1,\, if\, 1\leq x\leq2 Go to Discussion
Solution Qus : 6
4 Number of onto (surjective) functions from A to B if n(A)=6 and n(B)=3, is
1 2 3 340 4 540 Go to Discussion
Solution Qus : 7
1 Let X_i, i = 1,2,.. , n be n observations and w_i = px_i +k, i = 1,2,
,n where p and k are constants. If the mean of x_i 's is 48 and the standard deviation is 12, whereas the mean of w_i 's is 55 and the standard deviation is 15, then the value of p and k should be
1 p = 1.25, k = -5 2 p=-1.25, k = 5 3 p = 2.5, k = -5 4 p = 25, k = 5 Go to Discussion
Qus : 8
3 Let S be the set \{a\in Z^+:a\leq100\} .If the equation
[tan^2 x]-tan x - a = 0 has real roots (where [ . ] is the greatest
integer function), then the number of elements is S is
1 10 2 8 3 9 4 0 Go to Discussion
Qus : 9
2 The number of one - one functions
f: {1,2,3} → {a,b,c,d,e} is
1 125 2 60 3 243 4 None of these Go to Discussion
Solution
Given: A one-one function from set \{1,2,3\} to set \{a,b,c,d,e\}
Step 1: One-one (injective) function means no two elements map to the same output.
We choose 3 different elements from 5 and assign them to 3 inputs in order.
So, total one-one functions = P(5,3) = 5 \times 4 \times 3 = 60
✅ Final Answer: \boxed{60}
Qus : 10
3 The domain of the function f(x)=\frac{{\cos }^{-1}x}{[x]} is
1 [-1,0)\cup\{1\} 2 [-1,1] 3 [-1,1) 4 None of the above Go to Discussion
Solution Qus : 11
2 The function f(x)=\log (x+\sqrt[]{{x}^2+1}) is
1 an even function 2 an odd function 3 a periodic function 4 neither an even nor an odd function Go to Discussion
Solution Qus : 12
2 The value of f(1) for f\Bigg{(}\frac{1-x}{1+x}\Bigg{)}=x+2 is
1 1 2 2 3 3 4 4 Go to Discussion
Solution
Given:
f\left(\frac{1 - x}{1 + x}\right) = x + 2
To Find: f(1)
Let \frac{1 - x}{1 + x} = 1 \Rightarrow x = 0
Then, f(1) = f\left(\frac{1 - 0}{1 + 0}\right) = 0 + 2 = 2
Answer: \boxed{2}
Qus : 13
1 If f(x)=cos[\pi ^2]x+cos[-\pi ^2]x, where [.] stands for greatest integer function, then f(\pi/2) =
1 -1 2 0 3 1 4 2 Go to Discussion
Solution
? Function with Greatest Integer and Cosine
Given:
f(x) = \cos\left([\pi^2]x\right) + \cos\left([-\pi^2]x\right)
Find:
f\left(\frac{\pi}{2}\right)
Step 1: Estimate Floor Values
\pi^2 \approx 9.8696 \Rightarrow [\pi^2] = 9,\quad [-\pi^2] = -10
Step 2: Plug into the Function
f\left(\frac{\pi}{2}\right) = \cos\left(9 \cdot \frac{\pi}{2}\right) + \cos\left(-10 \cdot \frac{\pi}{2}\right)
= \cos\left(\frac{9\pi}{2}\right) + \cos(-5\pi)
Step 3: Simplify
\cos\left(\frac{9\pi}{2}\right) = 0,\quad \cos(-5\pi) = -1
✅ Final Answer:
\boxed{-1}
Qus : 14
2 The function
is
1 An even function 2 An odd function 3 A periodic Function 4 Neither an even nor an odd function Go to Discussion
Solution Qus : 15
1 Which of the following function is the inverse of itself?
1 2 3 4 None of these Go to Discussion
Solution Qus : 16
4 If the graph of y = (x – 2)2 – 3 is shifted by 5 units up along y-axis and 2 units to the right along
the x-axis, then the equation of the resultant graph is
1 y=x2 +2 2 y=(x-2)2 +5 3 y=(x+2)2 +2 4 y = (x - 4)2 + 2 Go to Discussion
Solution When y= f (x) is shifted by k units to the right along x
– axis, it become y= f (x - k )
Hence, new equation of
graph is y = (x - 4)2 + 2
Qus : 17
3 A function f : (0,\pi) \to R
defined by f(x) = 2 sin x + cos 2x has
1 A local minimum but no local maximum 2 A local maximum but no local minimum 3 Both local minimum and local maximum 4 Neither a local minimum nor a local maximum
Go to Discussion
Solution Qus : 18
4 The number of one-to-one functions from {1, 2, 3} to {1, 2, 3, 4, 5} is
1 125 2 243 3 10 4 60 Go to Discussion
Solution [{"qus_id":"3772","year":"2018"},{"qus_id":"3746","year":"2018"},{"qus_id":"3901","year":"2019"},{"qus_id":"3929","year":"2019"},{"qus_id":"3914","year":"2019"},{"qus_id":"4291","year":"2017"},{"qus_id":"11118","year":"2022"},{"qus_id":"11138","year":"2022"},{"qus_id":"11524","year":"2023"},{"qus_id":"11531","year":"2023"},{"qus_id":"11532","year":"2023"},{"qus_id":"11543","year":"2023"},{"qus_id":"11546","year":"2023"},{"qus_id":"11623","year":"2024"},{"qus_id":"11651","year":"2024"},{"qus_id":"11668","year":"2024"},{"qus_id":"10223","year":"2015"},{"qus_id":"10233","year":"2015"}]